L - S Band Low Noise Amplifiers Designs ... is Cooling Necessary ?

Tommy Henderson – WD5AGO

What's New in Low Noise Devices?

- pHEMT Devices have lower noise figures in the 10 to 20 GHz spectrum but little has change in n/f performance from 0.5 to 5 GHz
- Low noise MMIC technology is near and with cryogenic cooling can out perform pHEMTs
- mHEMT Devices have lower noise figures but are currently in non leaded chip-die's

Stability and Advantage in 2nd Stage

- Determined both experimentally and in CAD a 2 stage LNA is some what easier to stabilize than a single stage design
- 2nd stage contribution will increase noise figure slightly but will lower overall system noise performance,

How Much Does 2nd Stage Effect LNA Noise Figure?

$$F = F_1 + \frac{F_2 - 1}{G_1}$$

 $NF = 10 \log_{10} F$

With ... NF1 = 0.4 dB, 13 dB G1 NF2 = 1.0 dB NF = 0.45 dB NF2 = 0.75 dB NF = 0.44 dB NF2 = 0.5 dB NF = 0.42 dB Source Inductance Effects on L-Band PCB using NE32584 Modeled in Touchstone

- 30mil k=0.6 @ 0.8 GHz
- 40mil k=0.7 @ 0.8 GHz
- 50mil k=1 @ 0.8 and k=0.9 @ 9 GHz
- 60mil k=0.6 @ 9 GHz
- 70mil k=0.3 @ 9 GHz

What are the new Challenges in LNA Designs?

- Low frequency circuit stability still difficult to achieve due to devices designed for higher frequency usage
- Device package changes by Manufactures require up-dated PCB designs – and Glasses!
- Higher IMD performance due to ISM and other in/out of band noise sources

T. Henderson WD5AGO

Using 62mil-FR4 above L-Band?

- Laboratory and CAD analysis has indicated too much source inductance for the 9cm band using 62 mil PCB.
- PCB losses does not effect the noise figure as the low loss input circuit is suspended in air.
- Conclusion: Stay with FR4 but use 32 or 20 mil board for f > 2GHz.

Device	Gate Width	Specified F _{MIN} @ 2GHz	Measured dB NF @ 2GHz	Specified P _{1dB}
ATF34143	800 um	0.50	0.68	+20
ATF35143	400 um	0.30	0.60	+11
ATF36077	200 um	0.30	0.42	
ATF36163	200 um	0.50	0.61	+5
FHC40LG	200 um	0.28	0.45	
MGA61563	MMIC	0.80	0.90	+15
MGF4931	160 um	0.28	0.45	
MGF4953	160 um	0.25	0.43	
NE3210S01	160 um	0.29	0.42	
NE3511S01	160 um	0.26	0.38	

T. Henderson WD5AGO

MMIC in 2nd Stage?

- Adding a low noise (~ 0.8dB) 2nd stage MMIC improved broad stability k >1
- Noise figure average 0.05 dB higher than original AGO circuit with ATF21186 in 2nd stage (0.25 to 0.30 dB n/f on 23cm)
- Lower frequency cutoff made possible by Mini –Circuits SMD HP filter

AGO – LUA L Band Higher IP LNA Using 32mil - FR4

ATF-36077

Higher IP PCB designed for L Band with stable performance though S Band

Measured High IP L – S Band LNA Results

Band – Device	Noise Figure	Gain	P1in dB
(S11~4dB)	dB	dB	(-31)
23cm – ATF36077	0.31	38	-20
23cm – NE3511S01	0.29	40	-22
13cm – ATF36077	0.48	28	-21
13cm – NE3511S01	0.45	29	-22
9cm – NE3511S01	0.51	28	-23
T. Henderson WD5AGO	2010 EME		13

Converting LNA to 13 or 9cm

ATF36077

- 13cm : Lg straight 0.4" long
- 9cm : Lg 0.25" long
- C-input is 2.7 pF
- C-MMIC coupling is 4.7 pF NE3210S01
- 13cm : Lg = 0.5" long
- 9cm : Lg = 0.3" long

13cm Higher IP LNA w/o Filtering

LNA w/SMD Filter

T. Henderson WD5AGO

Other Changes to the VLNA

- Adding Active bias to pHEMT 2nd Stage for either the ATF36163 or ATF34143
- Must have a combination of resistive loading which increases stability
- Using lower loss 20mil Rogers 4003 board material
- Control source inductance near frequency center of 2800 MHz

W5LUA - AGO 9cm ADS Results

Newest S-Band Prototype using a pHEMT 2nd Stage

Control of Source Inductance for the 1st stage

ATF36163 or ATF34143

T. Henderson WD5AGO

9cm VLNA on Rodgers 4003. NE3511S01 1st Stage and ATF35143 2nd Stage.

Thermal Electric Device (TED, Coolers, Peltier)

- A "Convenient" way to cool a LNA?
- Power Efficiency < 10%
- Current 4 stage unit
 6 V @ 10 Amps
- Best Tc = 200° K or about - 100° F
- 5 to 6 Stages Max

Qc W max

Multistage Series MS4,129,10,15 **Thermoelectric Modules**

Performance Curves at Th = 25°C

THERMO

4-1. 4-14

4-18

120

140

Innovative Technology for a Connected World

TED House Keeping

- COP is normally rated with no load
- Device loading <u>Will</u> greatly effect Tc in turn ΔT.
- Air Cooled Heat sink performs well for Th at about 325° K ~ 125° F
- Best Δ T with ACHS and $\frac{1}{4}$ W load ~ 70° C
- Water cooling reduces overall Tc
- Point of Zero COP is 100 to 125° K
- Vacuum Roughing Pump ~ 1 milliTorr T. Henderson WD5AGO 2010 EME

Pump and Water/Heat Radiator

T. Henderson WD5AGO

And...

- Vacuum is needed to keep condensation off of ckt
- Sealed connector plates and Neoprene for all gaskets
- Cooling the whole unit requires more power due to heat losses
- Less effective but better control is to cool the first stage device
- Heat loses through device leads
- Ceramic Device not the best but better than plastic

1st Device Only Cooler 0.4W

- Water Cooler Built in TED.
- Needed 3
 Gaskets
- 5 Stack

200° K w/o L, 240 ° w/L T. Henderson WD5AGO

2nd Unit 4 Stage 1.5W

T. Henderson WD5AGO

- 210° K w/o L
- 230° K w/ L
- Results 0.05 dB
- Wire bond Source Leads

Cooled 13cm VLNA Performance of Several different Low Noise Devices. A Combination of Peltier and Dry Ice ~ 200°C

13cm Devices Th - Tc

T. Henderson WD5AGO

6' * 1.5' Low Noise Horn used for S Band LNA CS/G Testing

T. Henderson WD5AGO

Results a Little Better w/Y factor

Andrews Grid 2.4m 0.375 f/D extended to 2.7m 0.33 f/D for

13cm – (#50 int) 9cm – (#2 int) 6cm – (#7 int)

Got Braver New 3.1 M 0.38 f/D Summer 09

13cm #61 13 dB sn 9cm #15 12.7 dB sn 6cm #16 12 dB sn

- CP Feed horns
- Square or Round
- Look in Disk for Dim.

T. Henderson WD5AGO 13cm and 9cm

Satisfied for the past 3 years of optaining the best possible efficiency of 59% for 0.33 f/D, New Dish of 3m, 0.41 f/D, added rim to 3.15m. Larger scalar tested to bring efficiency to ~64%, W1GHZ confirms added gain.

Finger stock

T. Henderson WD5AGO

09/09/2009

CP chap3 w25d20b350 RHCP

Conclusions

• Presented were modifications to existing 23cm LNA designs to place them on 13 or 9 cm.

 Also a stable, higher IP LNA and a VLNA, Both Designed and Optimized for L – S Band. 6cm LNA designs measured poorer results w/match

 Cooling will be of little benefit on 23cm and a increase of 0.2 to 0.5 dB in Sun noise on 13 or 9cm. Using Dry Ice maybe a better alternative until TED's break bellow 125° K

T. Henderson WD5AGO